\(\int \frac {(a+b \sec (c+d x))^3}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\) [597]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 156 \[ \int \frac {(a+b \sec (c+d x))^3}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {6 a \left (a^2+5 b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 b \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {8 a^2 b \sin (c+d x)}{5 d \sqrt {\sec (c+d x)}}+\frac {2 a^2 (a+b \sec (c+d x)) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)} \]

[Out]

2/5*a^2*(a+b*sec(d*x+c))*sin(d*x+c)/d/sec(d*x+c)^(3/2)+8/5*a^2*b*sin(d*x+c)/d/sec(d*x+c)^(1/2)+6/5*a*(a^2+5*b^
2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(
d*x+c)^(1/2)/d+2*b*(a^2+b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1
/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3926, 4132, 3856, 2719, 4130, 2720} \[ \int \frac {(a+b \sec (c+d x))^3}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 b \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a \left (a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a^2 \sin (c+d x) (a+b \sec (c+d x))}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {8 a^2 b \sin (c+d x)}{5 d \sqrt {\sec (c+d x)}} \]

[In]

Int[(a + b*Sec[c + d*x])^3/Sec[c + d*x]^(5/2),x]

[Out]

(6*a*(a^2 + 5*b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*b*(a^2 + b^2)*S
qrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (8*a^2*b*Sin[c + d*x])/(5*d*Sqrt[Sec[c + d
*x]]) + (2*a^2*(a + b*Sec[c + d*x])*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3926

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[a^2*Co
t[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[1/(d*n), Int[(a + b*Csc[e + f*x]
)^(m - 3)*(d*Csc[e + f*x])^(n + 1)*Simp[a^2*b*(m - 2*n - 2) - a*(3*b^2*n + a^2*(n + 1))*Csc[e + f*x] - b*(b^2*
n + a^2*(m + n - 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2]
 && ((IntegerQ[m] && LtQ[n, -1]) || (IntegersQ[m + 1/2, 2*n] && LeQ[n, -1]))

Rule 4130

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[A*Cot[e
+ f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a^2 (a+b \sec (c+d x)) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2}{5} \int \frac {6 a^2 b+\frac {3}{2} a \left (a^2+5 b^2\right ) \sec (c+d x)+\frac {1}{2} b \left (a^2+5 b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 (a+b \sec (c+d x)) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2}{5} \int \frac {6 a^2 b+\frac {1}{2} b \left (a^2+5 b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx+\frac {1}{5} \left (3 a \left (a^2+5 b^2\right )\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx \\ & = \frac {8 a^2 b \sin (c+d x)}{5 d \sqrt {\sec (c+d x)}}+\frac {2 a^2 (a+b \sec (c+d x)) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\left (b \left (a^2+b^2\right )\right ) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{5} \left (3 a \left (a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {6 a \left (a^2+5 b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {8 a^2 b \sin (c+d x)}{5 d \sqrt {\sec (c+d x)}}+\frac {2 a^2 (a+b \sec (c+d x)) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\left (b \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {6 a \left (a^2+5 b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 b \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {8 a^2 b \sin (c+d x)}{5 d \sqrt {\sec (c+d x)}}+\frac {2 a^2 (a+b \sec (c+d x)) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.85 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.68 \[ \int \frac {(a+b \sec (c+d x))^3}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\sqrt {\sec (c+d x)} \left (6 a \left (a^2+5 b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+10 b \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+a^2 (5 b+a \cos (c+d x)) \sin (2 (c+d x))\right )}{5 d} \]

[In]

Integrate[(a + b*Sec[c + d*x])^3/Sec[c + d*x]^(5/2),x]

[Out]

(Sqrt[Sec[c + d*x]]*(6*a*(a^2 + 5*b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 10*b*(a^2 + b^2)*Sqrt[Co
s[c + d*x]]*EllipticF[(c + d*x)/2, 2] + a^2*(5*b + a*Cos[c + d*x])*Sin[2*(c + d*x)]))/(5*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(411\) vs. \(2(190)=380\).

Time = 22.57 (sec) , antiderivative size = 412, normalized size of antiderivative = 2.64

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+20 a^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) b -2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a^{3}-10 a^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) b +5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, a^{2} b +5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, b^{3}-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, a^{3}-15 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, a \,b^{2}\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(412\)
parts \(-\frac {2 a^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 b^{3} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}+\frac {6 a \,b^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 a^{2} b \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(659\)

[In]

int((a+b*sec(d*x+c))^3/sec(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2/5*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-8*a^3*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+8
*a^3*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+20*a^2*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)*b-2*cos(1/2*d*x+1/
2*c)*sin(1/2*d*x+1/2*c)^2*a^3-10*a^2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)*b+5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*
EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*a^2*b+5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*El
lipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*b^3-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellipt
icE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*a^3-15*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE
(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*a*b^2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*
c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.24 \[ \int \frac {(a+b \sec (c+d x))^3}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {5 \, \sqrt {2} {\left (i \, a^{2} b + i \, b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} {\left (-i \, a^{2} b - i \, b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, \sqrt {2} {\left (-i \, a^{3} - 5 i \, a b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, \sqrt {2} {\left (i \, a^{3} + 5 i \, a b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (a^{3} \cos \left (d x + c\right )^{2} + 5 \, a^{2} b \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{5 \, d} \]

[In]

integrate((a+b*sec(d*x+c))^3/sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

-1/5*(5*sqrt(2)*(I*a^2*b + I*b^3)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*sqrt(2)*(-I*a^
2*b - I*b^3)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*sqrt(2)*(-I*a^3 - 5*I*a*b^2)*weiers
trassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*sqrt(2)*(I*a^3 + 5*I*a*b^2)*we
ierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2*(a^3*cos(d*x + c)^2 + 5*a^
2*b*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/d

Sympy [F]

\[ \int \frac {(a+b \sec (c+d x))^3}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (a + b \sec {\left (c + d x \right )}\right )^{3}}{\sec ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((a+b*sec(d*x+c))**3/sec(d*x+c)**(5/2),x)

[Out]

Integral((a + b*sec(c + d*x))**3/sec(c + d*x)**(5/2), x)

Maxima [F]

\[ \int \frac {(a+b \sec (c+d x))^3}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \sec \left (d x + c\right ) + a\right )}^{3}}{\sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^3/sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^3/sec(d*x + c)^(5/2), x)

Giac [F]

\[ \int \frac {(a+b \sec (c+d x))^3}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \sec \left (d x + c\right ) + a\right )}^{3}}{\sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^3/sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^3/sec(d*x + c)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \sec (c+d x))^3}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^3}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

[In]

int((a + b/cos(c + d*x))^3/(1/cos(c + d*x))^(5/2),x)

[Out]

int((a + b/cos(c + d*x))^3/(1/cos(c + d*x))^(5/2), x)